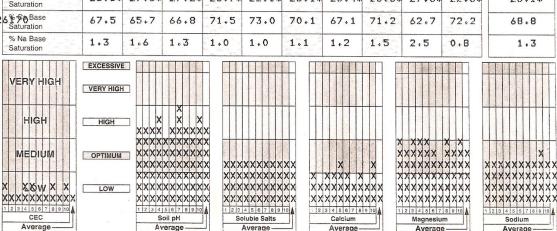
Interpreting Soil Sample Results


A.J. Lindsey, Ph.D. Environmental Horticulture University of Florida

Soil Testing

0000

			ALL NUTRIE	NT RESUL	TS EXPRES	SED IN PPM					AVERAGES
CODE	1	2	3	4	5	6	7	8	9	10	
Sample Description	GRN11	GRN12	GRN13	GRN14	GRN15	GRN16	GRN17	GRN18	PG	WARMUP	
CEC	3.4	2.8	3.1	4.2	4.4	3+2	2.5	4 • 1	2.7	4.3	3.5
Soil pH	6.7*	6.7*	6.7*	6 + 9*	6 . 4	6,8*	7+1*	6+8*	6.7*	7.0*	6.8*
Buffer pH				gling of a	7+2			and a second sec	······		7.2
Soluble Salts	0.14	0.14	0.12	0+18	0.18	0.20	0,14	0.18	0.23	0.13	0.16
Exchangeable Calcium (Ca)	454*	366*	417*	597*	641	452*	334*	586*	344%	627	482%
Exchangeable Magnesium (Mg)	104	92	102	119	1.1.6	97	79	115	90	119	103
Exchangeable Sodium (Na)	10	10	9	10	10	8	7	14	16	8	10
% H Base Saturation	0.0	0.0	0.0	0.0	0.0	0+0	0.0	0.0	0.0	0,0	
% K Base Saturation	5.4*	5.2*	4.8*	3.7*	4.0*	3•8*	5.3*	4.0*	7↓5*	4.2*	4.81
% Mg Base Saturation	25.8*	27.5%	27.2*	23.7*	22.0%	25.1*	26.4%	23.3%	27.3%	22.8*	25.1
бор Base Saturation	67.5	65.7	66+8	71+5	73.0	70.1	67.1	71+2	62.7	72.2	8,86
% Na Base Saturation	1.3	1.6	1.3	1.0	1.0	1.1	1.2	1.5	2.5	0.8	1.3

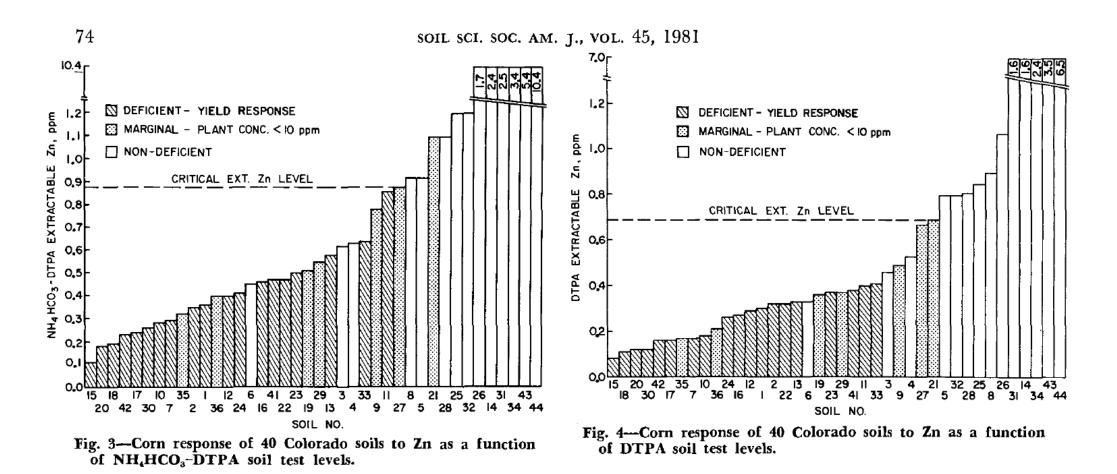
Average -----

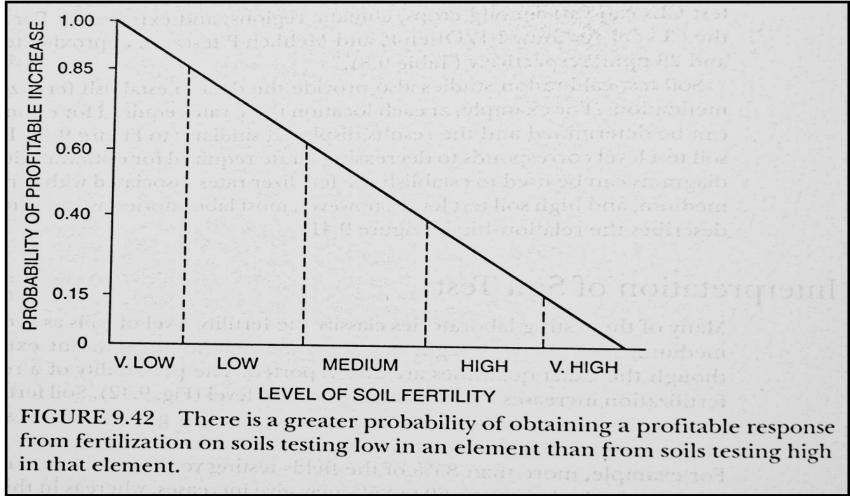
Average-

Average -

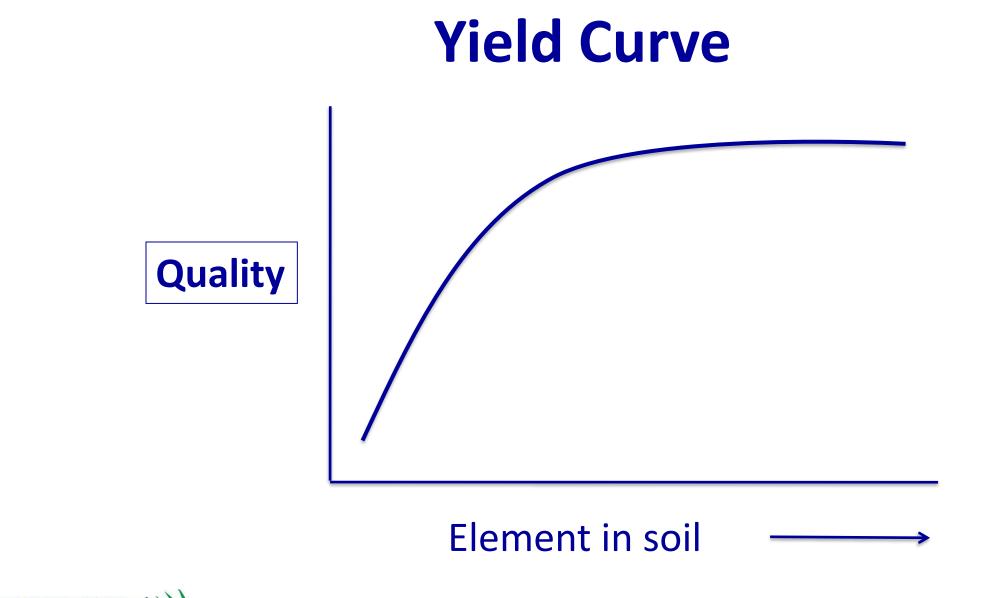
Average-

What is the purpose of a soil test?


- To increase crop yields
- Is increasing 'yields' important for turfgrass?



How are soil test values interpreted?



Response Probability

Take a Representative Sample

- Collect from several locations
- Depth depends on lab
- Combine and mix samples
- Take a sub-sample, approximately 1 cup
- How often?

Soil Test Values

- Cation exchange capacity (CEC)
- pH
- Salinity and sodicity
- Organic matter (OM)
- Base saturation
- Nutrient concentrations

17 Essential Elements

- Carbon (C)
- Hydrogen (H)
- Oxygen (O)
- Nitrogen (N)
- Phosphorus (P)
- Potassium (K)
- Sulfur (S)
- Calcium (Ca)

- Iron (Fe)
- Magnesium (Mg)
- Boron (B)
- Manganese (Mn)
- Copper (Cu)
- Zinc (Zn)
- Molybdenum (Mo)
- Chlorine (Cl)
- Nickel (Ni)

Understanding Turf Nutrients

- Macronutrients
 - Plants need large amounts of these elements
 - Needs generally provided by conventional fertilization practices

- Secondary Nutrients
 - Plants require lesser amounts of these materials

Calcium (Ca) Magnesium (Mg) Sulfur (S)

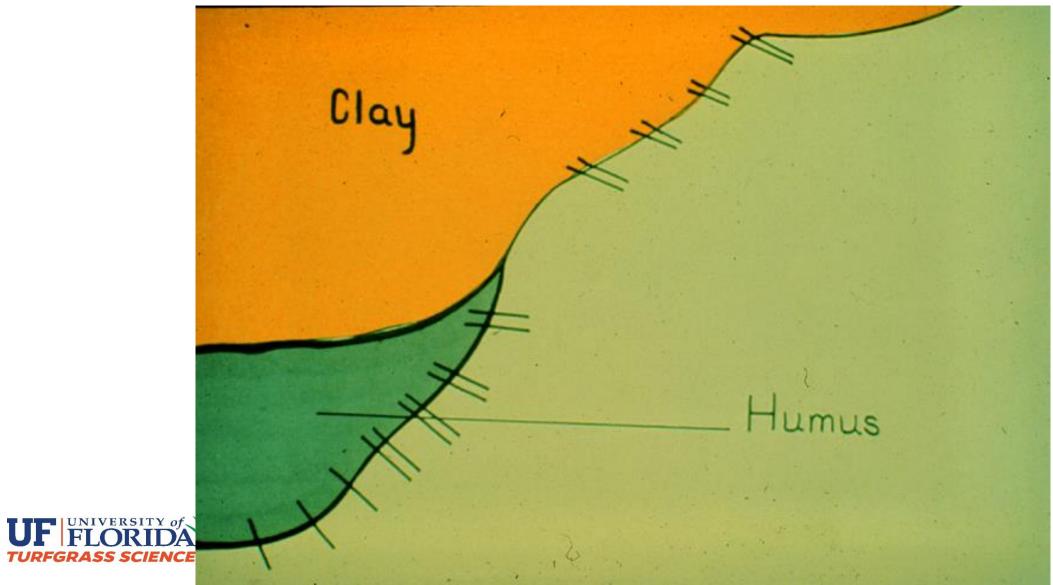
Understanding Turf Nutrients

- Micronutrients
 - The *term* micronutrients does not imply that these elements are unimportant; rather, it indicates that the amounts required are relatively low
 - Deficiencies generally associated with either excessive alkalinity (high pH) or excessive acidity (low pH)

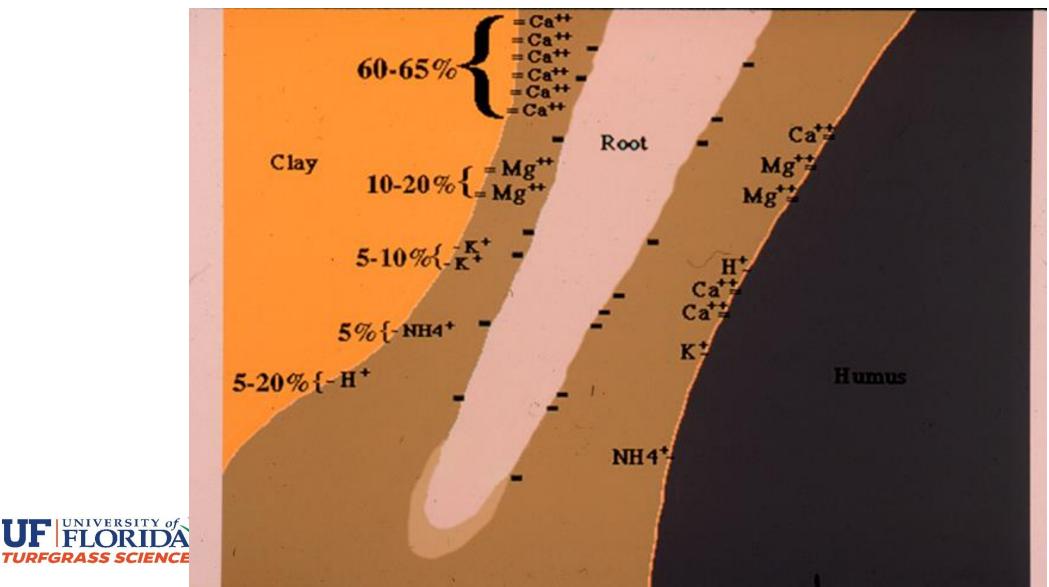
Iron (Fe), Manganese (Mn), Boron (B), Copper (Cu), Zinc (Zn), Molybdenum (Mo), Chlorine (Cl)

Basic Principles and Terminology

- CEC
- pH
- Salinity and sodicity
 - Electrical conductivity (EC)
 - Exchangeable sodium percentage (ESP)
 - Sodium adsorption ratio (SAR)



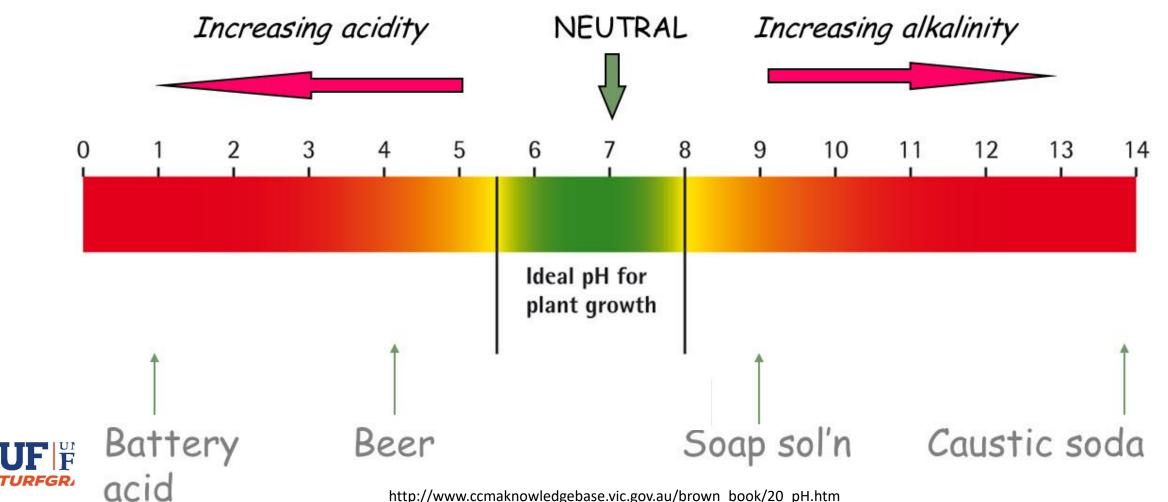
Cation/Anion Exchange Capacity (CEC)


- Cations (+)
 - Ca⁺⁺, Mg⁺⁺, K⁺, Na⁺, H⁺, Al⁺⁺⁺
- Anions (-)
 SO₄⁻, H₂PO₄⁻, HPO₄⁻⁻, NO₃⁻, Cl⁻
- CEC = the total quantity of cations which a soil can adsorb, expressed as milliequivalents per 100 gram dry soil or cmol kg⁻¹
 This is a measure of the number of cations adsorption sites

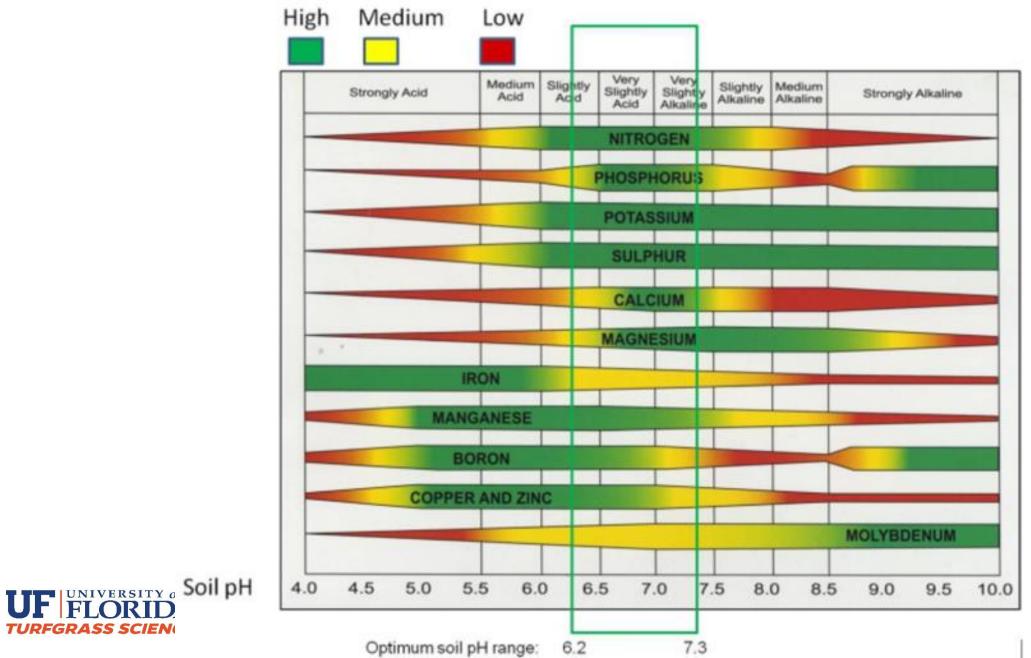
CEC of Clays and Humus

	CEC
<u>Clay or Humus</u>	meq/100 g
Kaolinite (south)	5-15
Illite	10-45
Vermiculite	60-150
Montmorillonite	60-150
Humus (well decomposed)	140-200
Roots	10-30

CEC of Soils


C		
L	EL	

Soil Texture	meq/100 g
Sand	2-4
Sandy	2-12
Loam	7-16
Silt loam	10-25
<u>Clay, clay loam</u>	20-50

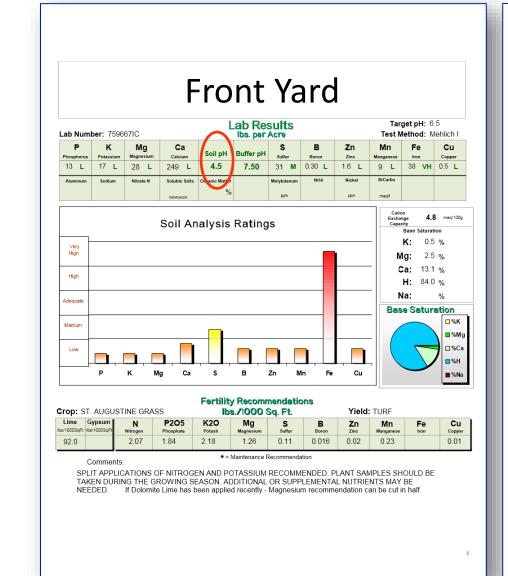

Soil pH - what is it?

- measure of the acidity or alkalinity of a soil
- concentration of hydrogen ions (H+) in the soil solution

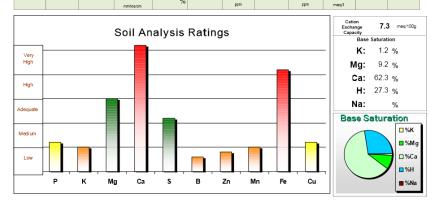
http://www.ccmaknowledgebase.vic.gov.au/brown book/20 pH.htm

How soil pH affects availability of plant nutrients

TURFGRASS SCIEN


https://ucanr.edu/sites/Salinity/Salinity_ Management/Effect_of_salinity_on_soil_ properties/Effect_of_pH_sodicity_and_s alinity_on_soil_fertility_/

Front Yard – Struggling to Survive


Back Yard – Not too Bad

Back Yard

Lab Num	ber: 7596	69IC			ab Res					getpH:6 //ethod:№	
P Phosphorus	K Potassium	Mg Magnesium	Ca Calcium	Soil pH	Buffer pH	S Sulfur	Boron	Zn Zinc	Mn Manganese	Fe	Cu Copper
48 M	70 L	161 A	1824 VH	6.8	7.75	54 A	0.27 L	2.4 L	17 L	33 VH	0.9 M
Aluminum	Sodium	Nitrate N	Soluble Salts	organic Matter %		Molybdenum	NH4	Nickel	BiCarbs		

Fertility Recommendations Crop: ST. AUGUSTINE GRASS lbs./1000 Sq. Ft. Yield: TURF Lime Gypsum P2O5 K20 Ma Mn Cu Ν s в Zn Fe lbs/1000SqFt lbs/1000Sq Nitrogen Phosphate Potash Magnesiur Sulfur Boron Zinc Manganese Copper 2.07 1.03 1.84 0.11 0.017 0.02 0.07 0.00

* = Maintenance Recommendation

Comments:

SPLIT APPLICATIONS OF NITROGEN AND POTASSIUM RECOMMENDED. PLANT SAMPLES SHOULD BE TAKEN DURING THE GROWING SEASON. ADDITIONAL OR SUPPLEMENTAL NUTRIENTS MAY BE NEEDED.

с

Lime (CaCO₃) Raises pH

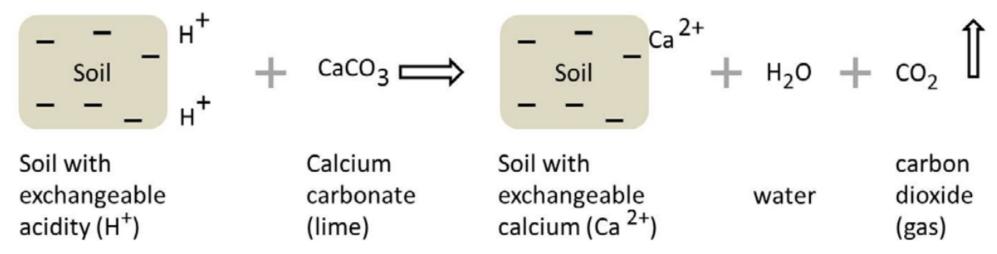


Figure 3.—Soil acidity reacts with lime to form water and carbon dioxide. The carbon dioxide gas is lost to the atmosphere. This chemical reaction continues until all of the lime has reacted. Figure by Dan Sullivan.

https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/em9057.pdf

The salt-affected soils occur in the arid and semiarid regions where evapotranspiration greatly exceeds precipitation. The accumulated ions causing salinity or alkalinity include sodium, potassium, magnesium, calcium, chlorides, carbonates and bicarbonates. The salt-affected soils can be primarily classified as saline soil and sodic soil.

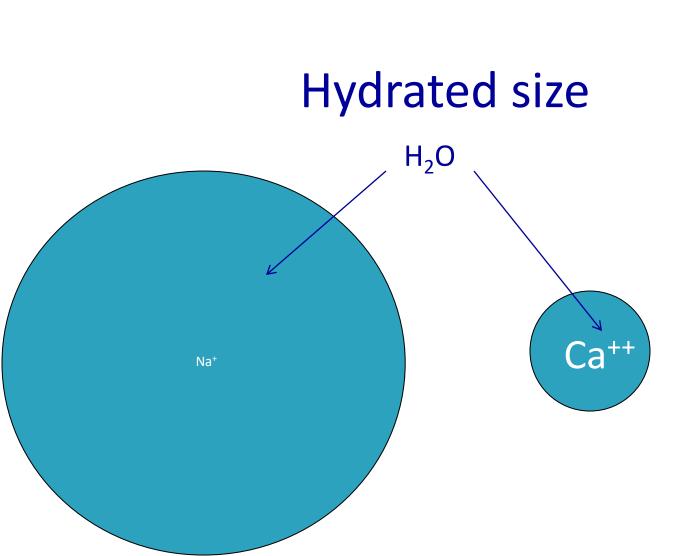
S. No.	Characteristics	Saline (Alkaline)	Saline – Sodic	Sodic (Alkali)	
1.	pH	< 8.5	> 8.5	> 8.5	
2.	EC	> 4.0 dSm ⁻¹	$> 4.0 \text{ dSm}^{-1}$	< 4.0 dSm ⁻¹	
3.	Salt Concentration	> 0.2 %	> 0.2 %	< 0.2 %	
4.	ESP%*	< 15.0%	> 15.0%	> 15.0%	
5.	SAR**	< 13.0	> 15.0	> 15.0	
6.	Dominant Cation	Ca ²⁺ , Mg ²⁺ , K ⁺	Ca ²⁺ , Mg ²⁺ , K ⁺ , Na ⁺	Na ⁺	
7.	Dominant Anion	Cl ⁻ , SO ₄ ²⁻ , NO ₃ ⁻	Cl ⁻ , SO ₄ ²⁻ , NO ₃ ⁻ , CO ₃ ²⁻ , HCO ₃ ⁻	CO ₃ ²⁻ , HCO ₃ ⁻	
8.	Soil Structure (Soil particles)	Flocculated	Flocculated	De flocculated	
9.	Infiltration	Good	God	Poor	
10.	Drainage	Good	God	Poor	
11.	Nomenclature	Solenchalk (White alkali)	-	Solentz (Black alkali)	

EC ESP SAR

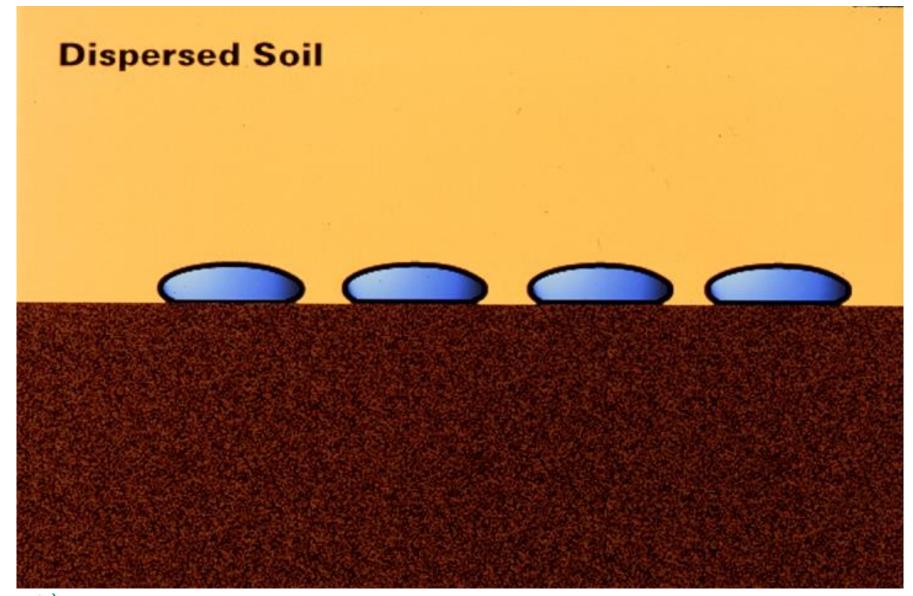
* Exchangeable Sodium Percentage (ESP) $ESP = \frac{Exchangeable Na^{+} (in milli equi./100 g Soil)}{Total CEC (in milli equi./100 g Soil)} X 100$ ** Sodium Adsorption Ratio (SAR) $SAR = \frac{[Na^{+}]}{ICAR}$

 $[Ca^{2+}] + [Mg^{2+}] / 2$

Salinity


and

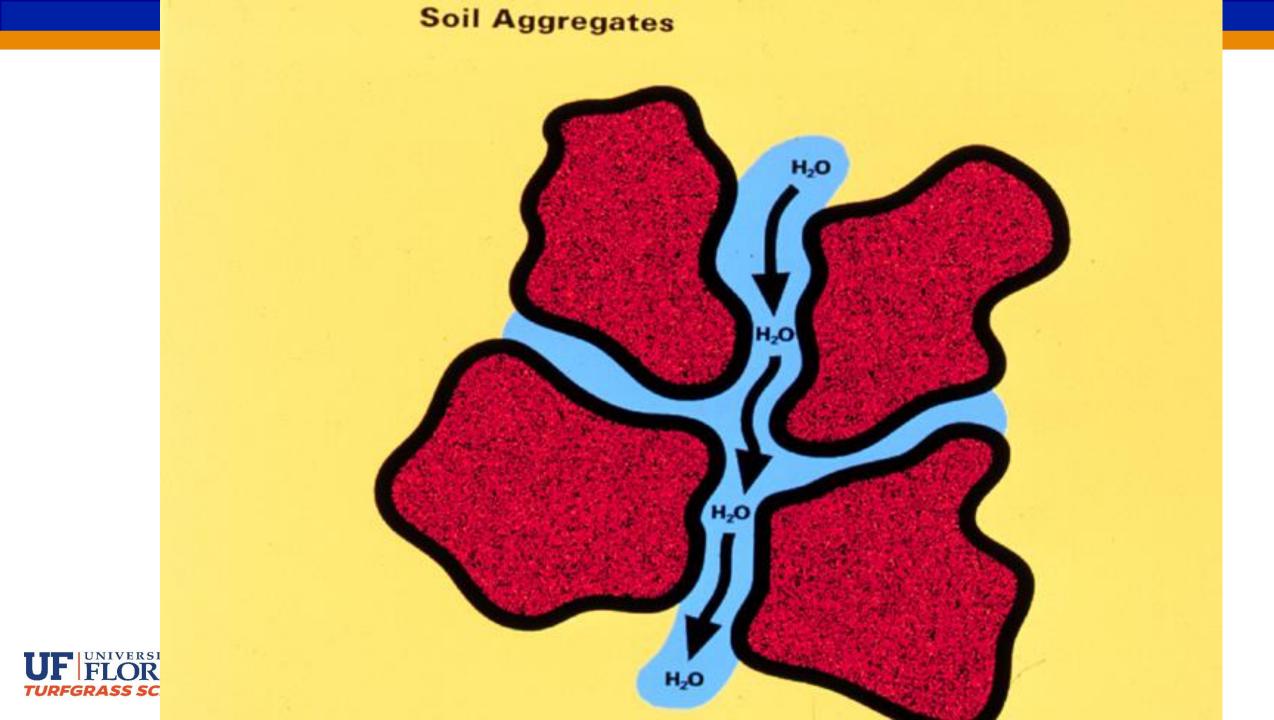
Sodicity


http://www.jnkvv.org/PDF/02042020114958Pro.% 20Soil-Book%20chapters%2006%20to%2008%20-%20Dr.%20R.K.%20Thakur.pdf

Sodium (Na)

- Not an essential element
- Naturally occurring
- Sewage effluent
- Can damage plants
- Monovalent (1⁺)
- Large hydrated size
- Can damage soil structure





Gypsum

UNIVERSITY

Soil testing

- Paste extract
- SLAN sufficiency level of available nutrients
- BCSR basic cation saturation ratio
- MLSN minimum level for sustainable nutrition

Paste Extract Tests

- Water-soluble test for short term results
- Tells what nutrients are soluble in soil
- Factors influencing paste tests
 - Weather (amount of rain), irrigation, poor water quality, high bicarbonate levels, recent fertilizer applications, topdressing, etc.
- Great tool for accessing soil salinity and pH

Paste Extract Tests

- Should be used with standard soil tests every time
- Expect low extraction values for fertility
- Data is lacking between turf quality and soluble nutrients
- Soil electrical conductivity (EC) amount of salts
- pH

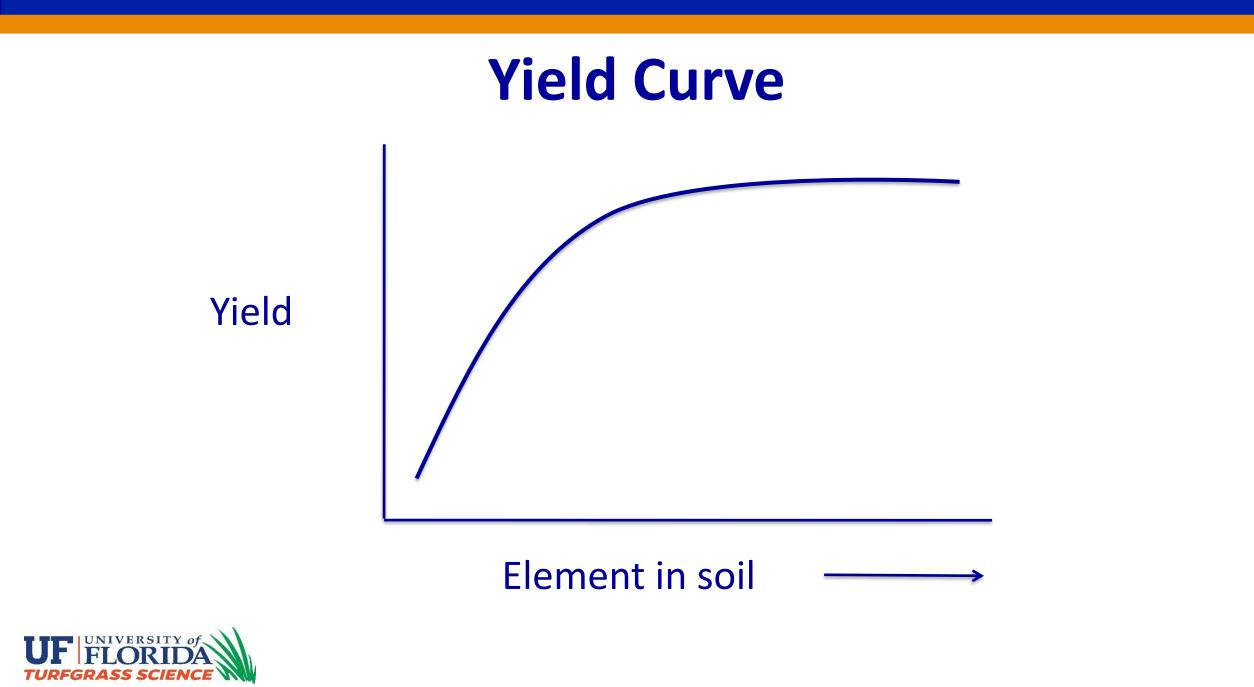
Saturated Paste Report

Soil Report

	Sample	Location	Green	Green	Green		Sample	e Location		Green	Green	Green			
	Sample	ID	3	5	10		Sample ID			3	5	10			
	Lab Number			104735	104736	104737		Lab Nu	imber		248	249	250		
	Water L	Ised		H2O prov	H2O prov	H2O prov		Sample	e Depth in inches		6	6	6		
	pН			7.2	7.2	7.1		Total E	xchange Capacity (M. E.)		10.95	13.13	11.10		
	Soluble	Salts	ppm	242	249	223		pH of S	Soil Sample		7.8	7.8	7.8		
	Chloride	e (Cl)	ppm	42	32	29		Organi	c Matter, Percent		0.91	1.08	0.76		
	Bicarbo	nate (HCO3)	ppm	195	215	176		SN	SULFUR:	p.p.m.	8	10	10		
	ANIONS	SULFUR	ppm	6.31	6.68	6.08			Mehlich III Phosphorous:	as (P_O_) 2_5 lbs / acre	455	414	437		
		PHOSPHORUS	ppm	3.4	1.97	1.27		-		lbs / ācrĕ					
		CALCIUM	ppm	46.42	52.53	47.33		S	CALCIUM:	Desired Value Value Found	2977 3743	3571 4604	3019 3773		
			meq/l	2.32	2.63	2.37		CATIONS	lbs / acre	Deficit					
		MAGNESIUM	ppm	7.89	8.68	7.86		ABLE CA		Desired Value	315	378	319		
	SOLUBLE CATIONS	HADILETON	meq/l	0.66	0.72	0.65			MAGNESIUM: lbs / acre	Value Found Deficit	213	207 -171	215		
	LUBL	POTASSIUM:	ppm	16.36	8.96	7.85		EXCHANGEABLE	NGE	Delicit	-102		-104		I
	SOI		meq/l	0.42	0.23	0.20			POTASSIUM:	Desired Value Value Found	341 186	409 149	346 221		
		CODTUN	ppm	8.77	7.05	6.27		Ä	lbs / acre	Deficit	-155	-260	-125		
		SODIUM	meq/l	0.38	0.31	0.27			SODIUM:	lbs / acre	32	44	43		
		Calcium		61.32	67.53	67.67	l	몹	Calcium (60 to 70%)		85.48	87.66	84.96		
	PERCENT	Magnesium		17.38	18.60	18.72			Magnesium (10 to 20%)		8.11	6.57	8.07		
	ERC	Potassium		11.23	5.98	5.83		Ĭ	Potassium (2 to 5%)		2.18	1.45	2.55		
	Sodium			10.08	7.89	7.79		SATURATION	Sodium (.5 to 3%)		0.64	0.73	0.85		
	IIS	Boron (p.p.m.)		0.04	0.05	0.03		SA							
	Iron (p.p.m.) Manganese (p.p.m.)			0.57	0.31	0.47 < 0.02		BASE	Other Bases (Variable)		3.60	3.60	3.60		
	ELE	Manganese (p.p.m.) Copper (p.p.m.)		< 0.02	< 0.02	< 0.02	——		Exchangable Hydrogen (10 to 15	5%)	0.00	0.00	0.00		
UNIVERSIT	TRACE	Zinc (p.p.m.)		< 0.02	< 0.02	< 0.02		S	Boron (p.p.m.)		0.24	0.32	0.26		<u>ا</u> ــــــــــــــــــــــــــــــــــــ
UF FLORI		Aluminum (p.p.m.)		1.14	0.69	0.93		EMENT	Iron (p.p.m.)		98	93	94		ļļ
TURFGRASS SCIE	NCI			–	_,			EM	Manganese (p.p.m.)	l	47	57	49		

SLAN

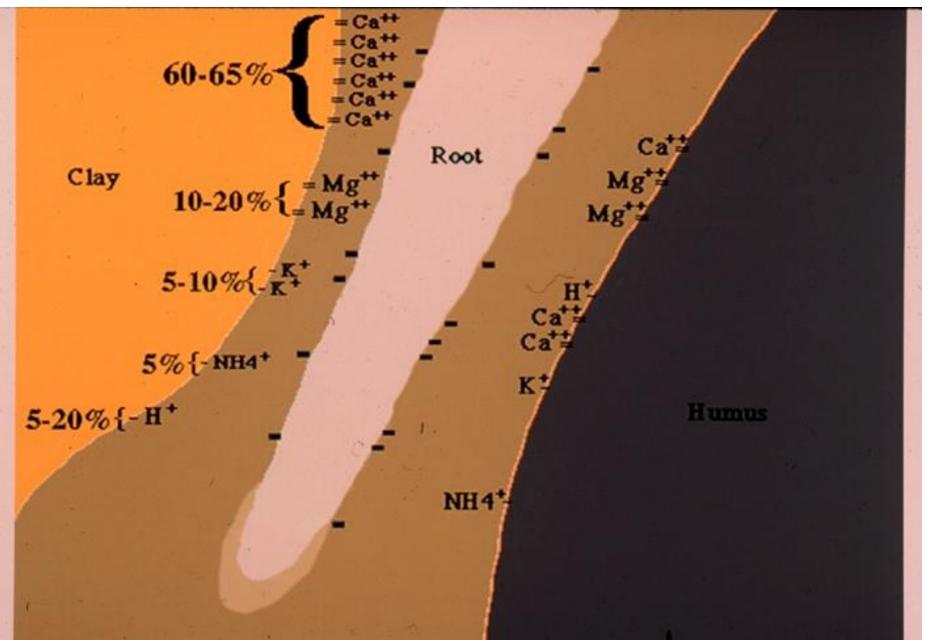
Sufficiency level of available nutrients


- Oldest method
- 80 Years + Research
- Interpretation varies with crop, soil type, climate, etc.

Test	Desuite			Calculated Cation				
	Results	Very Low	Low	Very High Exchange Ca				
Soil pH	5.8						2.	5
Buffer pH	6.90	1						Signer
Phosphorus (P)	34 ppm						meq/	
Potassium (K)	67 ppm						Calculate	
Calcium (Ca)	354 ppm							
Magnesium (Mg)	55 ppm						%K	6.5
Sulphur (S)	9 ppm			-			%Ca	55.9
Boron (B)	0.4 ppm						%Mg	16.9
Copper (Cu)	2.4 ppm					1.2	%H	18.8
iron (Fe)	210 ppm						%Na	0.9
Manganese (Mn)	70 ppm							
Zinc (Zn)	9.6 ppm	the second se			0			
Sodium (Na)	5 ppm							
Soluble Salts								
Organic Matter	1.5 % ENR 74	1						
NO3-N		1						

SOIL FERTILITY GUIDELINES

Crop : BEN	TGRASS G	REEN		Yield	Goal :	1	Rec	Units: L	.B/1000 SQ FT
LINE	N	P205	K20	Mg	8	8	Cu	Mn	Zn
40	4-6	0.5	5	0.2	0.2	0	0	0	0
Crop :				Yield Goal :			Rec Units:		



Basic Cation Saturation Ratio

- Based on an ideal ratio of cations on exchange sites
- Newer method
- Less research
- Do not use for turfgrass

- Problem ratio of cations
- Nutrient deficiency may exist

MLSN

Minimum level for sustainable nutrition

- Replacement for SLAN
- Set minimum required for optimal turf growth
 - Baseline soil nutrient concentrations
 - Keep soil levels above this value
 - Gives minimum values instead of a range
 - Tells how much to apply
 - Incorporates turf "growth potential"

Why Use MLSN?

- Focus on sustainability
- Reduce inputs
- Reduce maintenance costs
- Maintain expected turf performance
- Show reception to environmental concerns
- Plant health and soil health

MLSN

- Apply all nutrients at ratio determined by MLSN
- Why a ratio? Nutrient uptake driven by nitrogen
- Only apply what the plant can use
 - Amount determined by clipping nutrient content

Element	Tissue ppm	Ratio:N
N	40000	1
К	20000	0.5
Р	5000	0.13
Ca	4000	0.08
Mg	2500	0.05
S	3000	0.06
Fe	200	0.004
Mn	75	0.0015

This gives us a nutrient use ratio:

N:P:K \rightarrow 8:1:4

Roughly 90% of dry matter is carbon

https://www.paceturf.org/PTRI/Documents/Haines_Stowell_MLSN_GP.pdf

MLSN

Estimate from growth One can collect the clippings, express them as a mass, and calculate the quantity of nutrients in that mass of clippings. Clipping volume is a rapid way to estimate the mass. For every 1 L of clippings m⁻², expect a dry mass of 63 g. Then, calculate nutrient content by considering the elements in healthy turf. I typically use these numbers.

Element	% in dry leaves						
	Agrostis & Poa	Paspalum	Festuca				
N	4	3	3	3			
K	2	2	3	1.5			
Р	0.5	0.5	0.5	0.5			
Ca	0.5	0.5	0.5	0.5			
Mg	0.2	0.2	0.2	0.2			
S	0.2	0.2	0.2	0.2			

If you know that your turf contains different concentrations of nutrients than shown in this table, please make the adjustments to fit your site.

http://files.asianturfgrass.com/ mlsn_cheat_sheet.pdf

September, 2014

Minimum Levels for Sustainable Nutrition Soil Guidelines

The Minimum Level for Sustainable Nutrition (MLSN) Guideline is a new, more sustainable approach to managing soil nutrient levels that can help you to decrease fertilizer inputs and costs, while still maintaining desired turf quality and playability levels. The MLSN guidelines were developed in a joint project between PACE Turf and the Asian Turfgrass Center. All soil analyses were conducted at Brookside Laboratories, New Bremen, OH.

	MLSN Soil Guideline
рН	>5.5
Potassium (K ppm)	37
Phosphorus (P ppm)	21
Calcium (Ca ppm)	331
Magnesium (Mg ppm)	47
Sulfur as sulfate (S ppm)	7

Nitrogen requirements are best determined based on **turf growth potential**, which incorporates site-specific weather and turf type to calculate nitrogen demand (Gelernter and Stowell, 2005. Golf Course Management, p. 108-113, March, 2005).

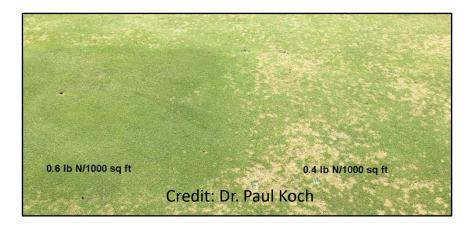
How the guidelines were developed

From a database of over 17,000 soil samples, we selected 3,721 that were classified as having:

- not poor performing turfgrass
- pH 5.5 8.5: to avoid aluminum toxicity at pH less than 5.5, and to avoid alkalinity hazard at pH greater than 8.5

https://www.paceturf.org/PTRI/ Documents/1202_ref.pdf

MLSN Positives


- Adaptive to future research
 - Turf nutrient understanding will evolve
- Adaptive to site and climate
- Reduce/redirect costs
- Maintain high quality
- Environmentally responsible

MLSN Limitations

- Good start, right direction
- Basically, SLAN for turf based on turf quality
- Turf quality not always the best guide
- Disease control
 - Diseases reduced by N
 - Dollar spot, rust, red thread

Tissue Testing

- Estimate of nutritional status at time of sampling
- Nutrient deficiencies can be detected before visual symptoms
- Precision turfgrass fertilization program?

Tissue Sampling

- Clipping collection
 - No sand or fertilizer contamination
- Do not collect immediately following fertilization, liming, topdressing, or pesticide application
- Paper bag not plastic
- Dry if possible

Reference Ranges

Table 1. Nutrient ranges for warm-season turfgrass species.*

	Bermudagrass	grass Centipedegrass Seashore St. Augus Paspalum		St. Augustinegrass	Zoysiagrass	
	-		%			
Ν	2.30-5.00	1.5–2.9	2.80-3.50	1.90-3.00	2.04–2.36	
Р	0.15-0.50	0.18-0.26	0.30-0.60	0.20-0.50	0.19-0.22	
K	1.00-4.00	1.12-2.50	2.00-4.00	2.50-4.00	1.05–1.27	
Ca	0.35-1.00	0.50-1.15	0.25-1.50	0.30-0.50	0.44-0.56	
Mg	0.13-0.50	0.12-0.21	0.25-0.60 0.15-0.25		0.13-0.15	
S	0.15-0.50	0.20-0.38	0.20-0.60	0.18-0.33	0.32-0.37	
	-		ppm			
Fe	50-500	50–500 102–221 50–500 50–300		50-300	188–318	
Mn	25-300	35–75	50-300	40–250	25–34	
Zn	20–250	17–40	20–250	20–100	36–55	
Cu	5–50	2–7	2–7 5–50		2–4	
В	6–30	5–10	5–10 5–60		6–11	
Мо	0.10-1.20	0.14-0.30	0.5–1.0 0.15–0.5		0.12-0.30	

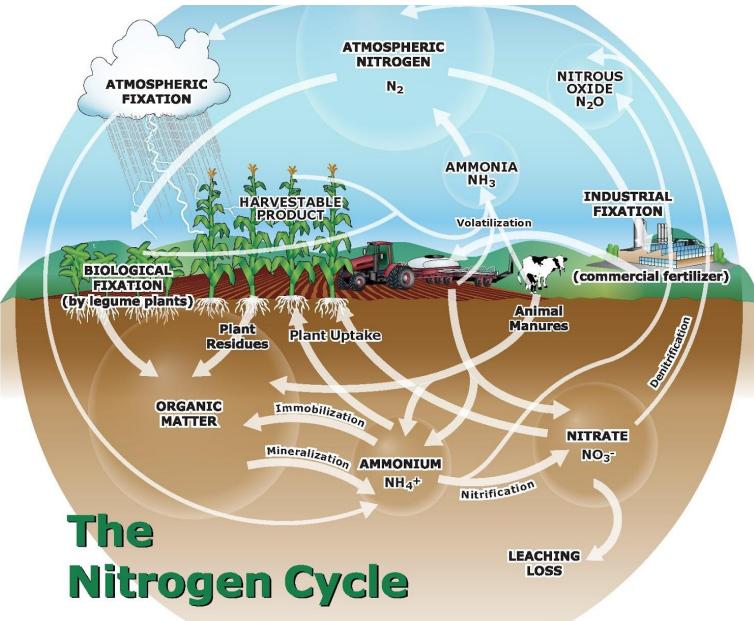
*Bryson et al. (2014)

https://edis.ifas.ufl.edu/pdf/EP/EP53900.pdf

Soil Test Units

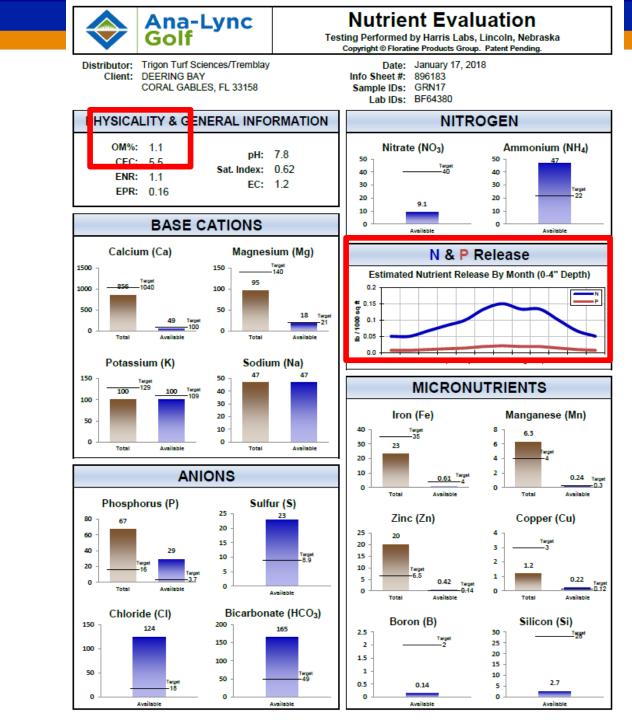
- Units may vary with test
 - Ib/A, parts per million (ppm)
- Sampling depth matters
 - ppm x 2 = lb/A (6-inch sampling depth)
 - ppm = lb/A (3-inch sampling depth)
- CEC: meq = cmol_c kg⁻¹

The usefulness of a soil test depends on proper interpretation

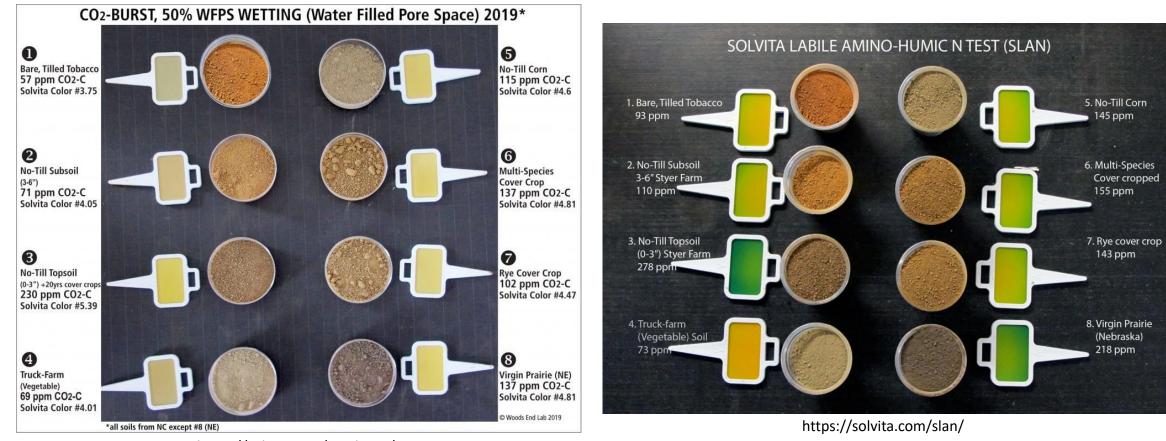


Nitrogen (N)

- For the most part, nitrogen controls the growth of turfgrass
 - Component of chlorophyll, proteins, amino acids, enzymes, and numerous other plant substances
- Nitrogen greatly enhances shoot growth
- Stimulates thatch accumulation
- Disease activity
- For a quality stress-tolerant turf, it must be routinely applied
- Potential environmental implications



Testing for N?



https://blog-crop-news.extension.umn.edu/2017/05/how-nitrogen-cycle-affects-fall-n.html

Solvita

https://solvita.com/co2-burst/

Nitrogen (N) Recommendations

- Use crop response for N rates
- IFAS Recommendations

Table 1. Fertilization Guidelines for Established Turfgrass Lawns							
	Nitrogen Recommendations (lbs 1,000 ft ⁻² year ⁻¹) ^{1, 2}						
	North Florida Central Florida South Florida						
Bahiagrass	1.0 - 3.0	1.0 - 3.0	1.0 - 4.0				
Bermudagrass	3.0 – 5.0	4.0 - 6.0	5.0 – 7.0				
Centipedegrass	0.4 - 2.0	0.4 - 3.0	0.4 - 3.0				
St. Augustinegrass	2.0-4.0 2.0-5.0 4.0-6.0						
Zoysiagrass	2.0 - 3.0	2.0 - 4.0	2.5 – 4.5				

¹Because homeowner preferences for lawn quality and maintenance level will vary; we recommend a range of fertility rates for each grass and location. Additionally, effects within a localized region (i.e., micro-environmental influences -- such as shade, drought, soil conditions, and irrigation) will necessitate that a range of fertility rates be used.

²These recommendations assume that grass clippings are left on the lawn.

Phosphorus (P)

Component of energy molecules - ATP and ADP

Store and transfer available energy within the plant

- Structural constituent in a number of biochemicals such as phospholipids, phosoproteins, nucleic acids, sugar phosphates, nucleotides, and coenzymes
- Deficiency symptoms
 - Initially dark green
 - Purple discoloration

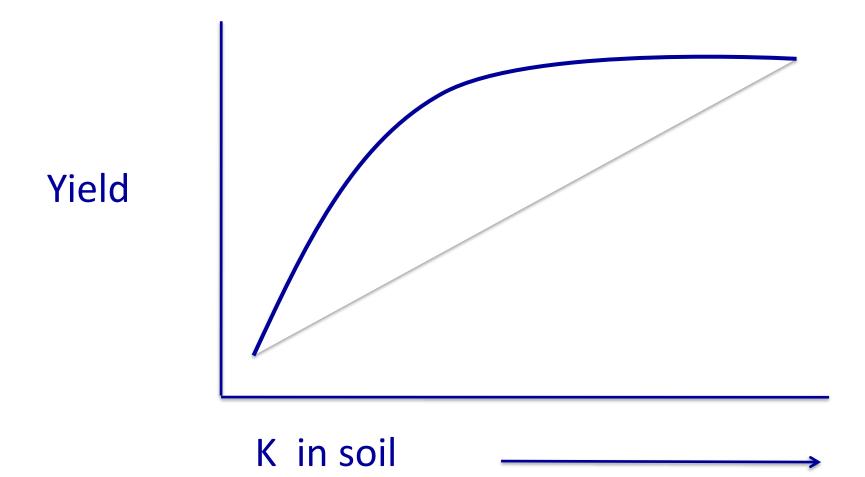
PHOSPHORUS

- P required in greater amounts during establishment of turf
- P fertilization should be based on soil test results
- MLSN: 21 ppm
- Florida: 10 ppm

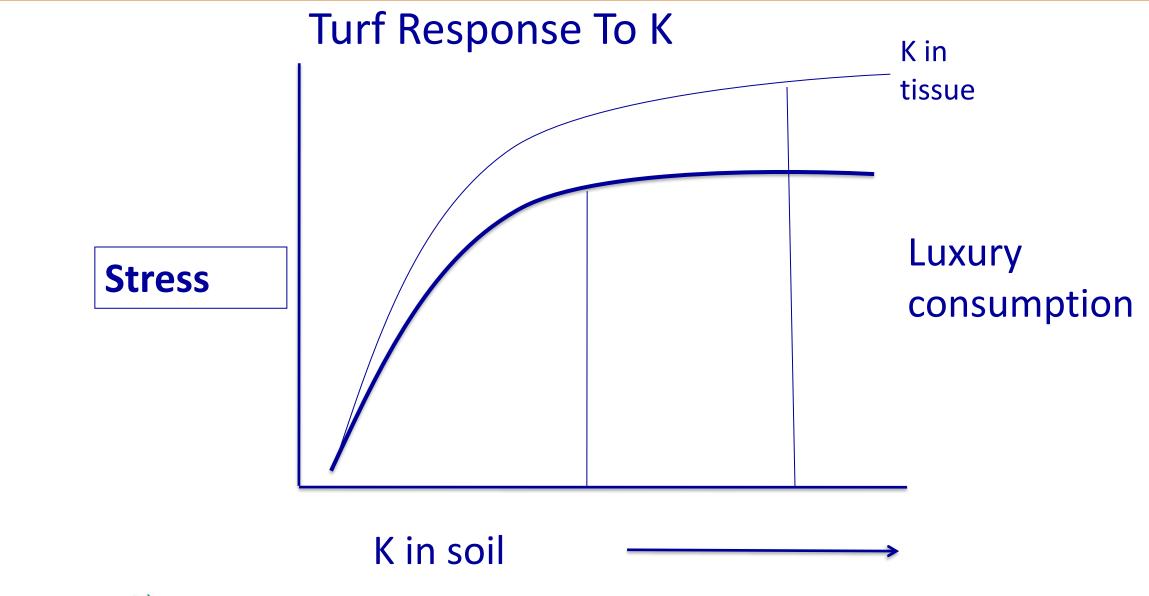
P Sufficiency Level by Extractant (Carrow)										
	ppm P									
	Very low	Very low Low Medium High								
Bray	0-4	5-15	16-30	>31						
Mehlich	0-12 13-26 27-54 >55									
Olsen	0-6	0-6 7-12 13-28 >29								
Numbers vary somewhat from lab to lab.										

Potassium (K)

- Required for activation of many enzymes
- Most important inorganic solute in the vacuole involved with osmoregulation and, thereby, water regulation in plants
- Used in carbohydrate, amino acid, and protein synthesis
- Stress tolerance



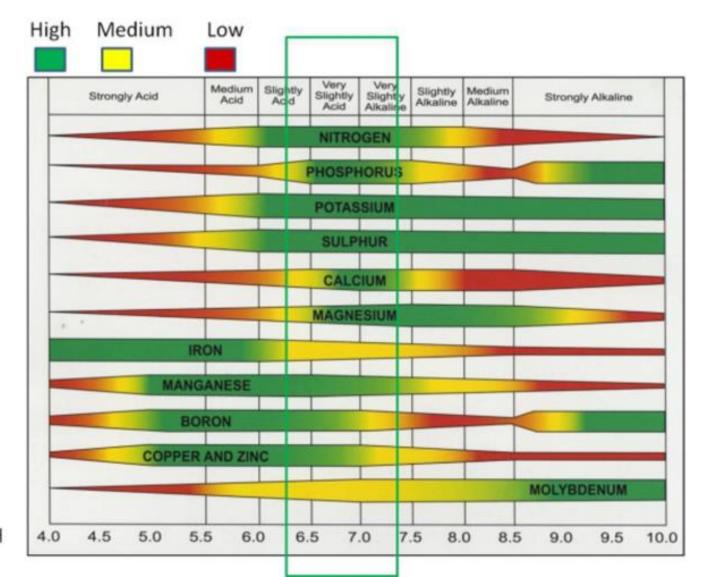
Potassium (K) Nutrition


- Many ignore potassium fertilization because there is no obvious visual or growth response from applications
 - Deficiencies lead to:
 - Increased wilting
 - Winter desiccation
 - Reduced drought tolerance
 - Reduced wear tolerance
 - Increased disease susceptibility

Potassium Response

Potassium

PPM		LB/A	KG/HA
0 - 40	Very Low	0-80	0-90
41 – 175	Low	81-350	91-392
175 -250	Adequate	350-500	392-560
250- +	High	500-+	560-+



Recommendations

- Maintain potassium within sufficiency range:
 - Soil K = 100 to 250 lb/acre or 50 to 125 ppm (37 ppm MLSN)
 - Tissue K = 1 to 4 %
- Florida: No nutrient response curve

Ca, Mg, S, and the micronutrients

https://ucanr.edu/sites/Salinity/Salinity_ Management/Effect_of_salinity_on_soil_ properties/Effect_of_pH_sodicity_and_s alinity_on_soil_fertility_/

Calcium (Ca)

- Cell wall formation, cell division, osmotic balance, membrane stabilization
- Younger leaves turn reddish-brown, fades to red
- Low pH conditions
- Liming solves problem
- MLSN: 331 ppm (Soil test issues?)
- 0.25 to 1.5 % in tissue

Soil Testing Problems

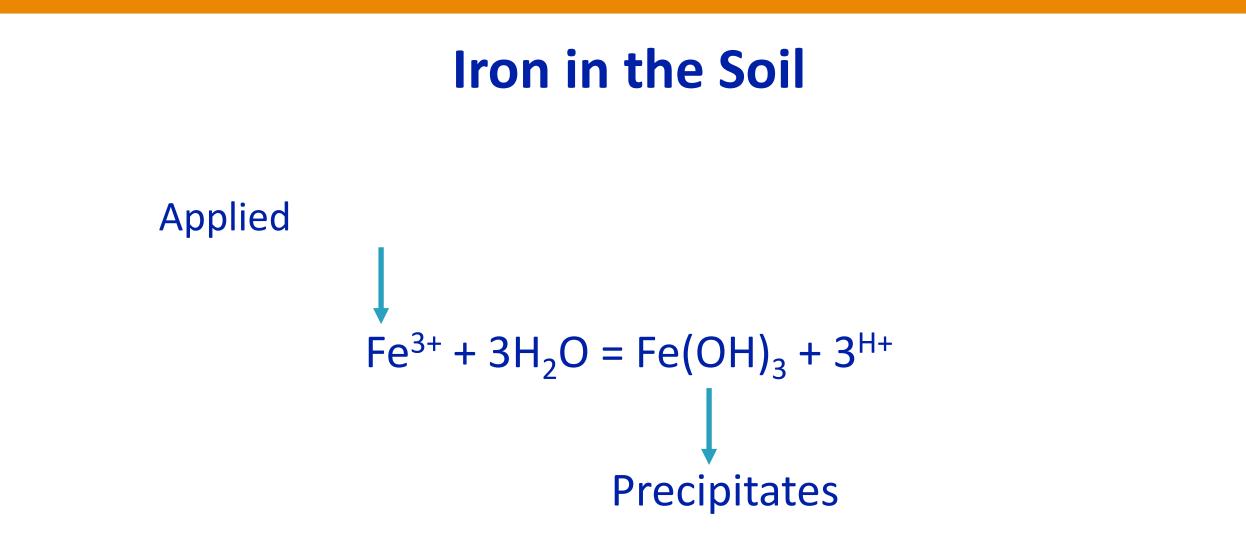
- Problems Identified with Soil Test Procedures CEC
- May be using inappropriate methods
 - Many using Ammonium Acetate (NH₄OAc)
 - NH₄OAc will dissolve calcium carbonate
 - Increases the amount of measured Ca
 - Increases the estimated CEC

Magnesium (Mg)

- Center of chlorophyll
- Symptom Chlorosis
- Low pH & Low CEC
- 0.12 to 0.60 % in tissue
- MLSN: 47 ppm
- Florida: 20 ppm

- Soil test levels varies with CEC
 - Less than 4 meq
 - Mehlich (30 to 140 ppm)
 - Ammonium acetate (80-140 ppm)
 - Higher CEC
 - Double the numbers (Carrow 2001)

Sulfur (S)


- May see it in rare situations
- Rare in most of U.S. because of high sulfur coal
- Yellowing of younger leaves
- Slow growth
- MLSN: 7 ppm
- 0.15 to 0.60 % in tissue

Iron (Fe)

- Cofactor for chlorophyll formation
- Symptom chlorosis
- Most common of all micronutrient deficiencies
- High pH
- Soil tests inaccurate
- 50 to 500 ppm in tissue
- Very small amounts applied to tissue (foliar application)

Manganese (Mn)

- Activator of at least 35 plant enzymes, formation of chlorophyll and lignin, root growth
- Yellowing like iron deficiency, veins remain green
 - Tips may remain green
- Leaves drop (lignin)
- Soil tests misleading
- 25 to 300 ppm in tissue

Zinc (Zn)

- Catalyst of enzymes, regulates gene expression, membrane function
- Stress management
- Deficiency rare
- 17 to 250 ppm in tissue

- Catalyst in photosynthesis and respiration, carbohydrate formation, lignin formation
- Deficiencies in high pH soils (rare)
- 2 to 50 ppm in tissue

Boron (B)

- Membrane and cell wall formation, sugar transport, carbohydrate metabolism
- Deficiencies rare
- Little needed (5 to 60 ppm in tissue)
- Very narrow range between deficiency and toxicity

Molybdenum (Mo)

- Enzyme reactions, sulfur metabolism
- Deficiency
- older leaves pale green
- 0.1 to 1 ppm in tissue

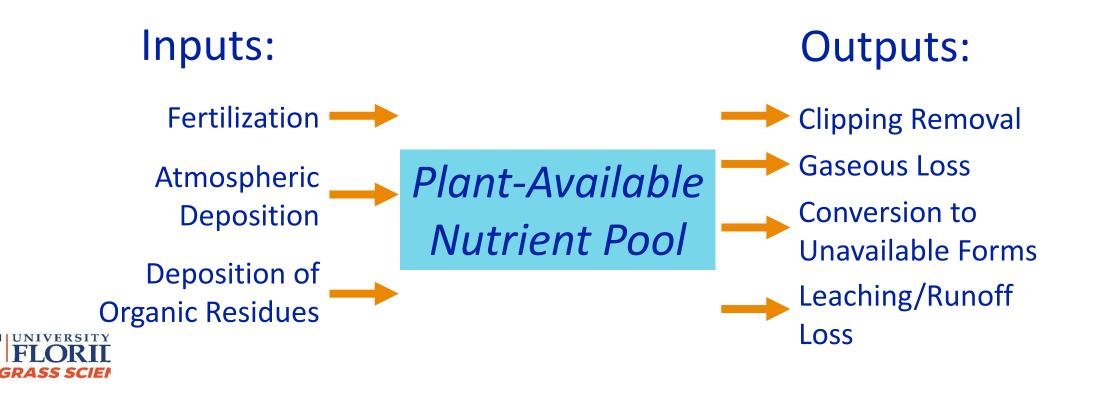
Summary

Use soil and tissue tests to develop a fertility program

Turfgrass Growth

Turf growth occurs through process of photosynthesis

Plants manufacture food from sunlight and turn it into carbon materials they use for growth.


Plants maintain some of this carbon as storage for use in spring green-up, recovery from stress, etc.

Nutrition and Fertilization BMPs

 The goal of a proper nutrient management plan should be to apply the minimum necessary nutrients to achieve an acceptable quality and apply these nutrients in a manner that maximizes their plant uptake

Basic Questions to Ask When Developing a Fertilizer Program

- What fertilizer analysis and source is best?
 - Soil and tissue tests
- What rate of this fertilizer should be used?
 - Soil and tissue tests
- What timing and frequency will provide optimum results?

Seven Steps To Developing a Fertilizer Program

- Determine annual N needs; Consider length of growing season
- Set approximates dates and rates of N application
- Select appropriate N carrier(s)
- Determine needs for P_2O_5 , K_2O , other nutrients, lime, etc.
- Consider other factors (ease of application, price, etc.)
- Plan the program, set up a table showing dates, carriers, rates, etc.
- Adjust program as needed for weather, disease, traffic, etc.

Micronutrients

- Fertilizer application of these nutrients may not be necessary where sufficient quantities exist in the soil or are supplied as small impurities in other fertilizers
 - -Soil testing should provide the basis for determining a micronutrient fertility program

Fertilizer

- Micronutrients should be applied via foliar application
 - Fe the only micronutrient to produce a response in every trial
 - Mn rarely produces a response
 - Mg almost never produces a response
 - No other micronutrients should be applied unless you have documented a response

Tissue Test Reference Ranges

Table 1. Nutrient ranges for warm-season turfgrass species.*

	Bermudagrass	Centipedegrass	grass Seashore St. Augustinegrass Paspalum		Zoysiagrass
	-		%		
Ν	2.30-5.00	1.5–2.9	2.80-3.50	1.90-3.00	2.04-2.36
Р	0.15-0.50	0.18-0.26	0.30-0.60	0.20-0.50	0.19-0.22
K	1.00-4.00	1.12–2.50	2.00-4.00	2.50-4.00	1.05–1.27
Ca	0.35-1.00	0.50-1.15	0.25-1.50	0.30-0.50	0.44-0.56
Mg	0.13-0.50	0.12-0.21	0.25-0.60	0.15-0.25	
S	0.15-0.50	0.20-0.38	0.20-0.60	0.18-0.33	0.32-0.37
	-		ppm		
Fe	50-500	102-221	50-500	50-300	188–318
Mn	25-300	35–75	50-300	40–250	25–34
Zn	20–250	17–40	20–250	20–100	36–55
Cu	5–50	2–7	2–7 5–50 10–20		2–4
В	6–30	5–10	5–10 5–60 5–10		6–11
Мо	0.10-1.20	0.14-0.30	0.5-1.0	0.15-0.5	0.12-0.30

*Bryson et al. (2014)

https://edis.ifas.ufl.edu/pdf/EP/EP53900.pdf

September, 2014

Minimum Levels for Sustainable Nutrition Soil Guidelines

The Minimum Level for Sustainable Nutrition (MLSN) Guideline is a new, more sustainable approach to managing soil nutrient levels that can help you to decrease fertilizer inputs and costs, while still maintaining desired turf quality and playability levels. The MLSN guidelines were developed in a joint project between PACE Turf and the Asian Turfgrass Center. All soil analyses were conducted at Brookside Laboratories, New Bremen, OH.

	MLSN Soil Guideline
рН	>5.5
Potassium (K ppm)	37
Phosphorus (P ppm)	21
Calcium (Ca ppm)	331
Magnesium (Mg ppm)	47
Sulfur as sulfate (S ppm)	7

Florida

- P: 10 ppm
- Mg: 20 ppm

https://edis.ifas.ufl.edu/pdf/SS/SS31700.pdf

Nitrogen requirements are best determined based on **turf growth potential**, which incorporates site-specific weather and turf type to calculate nitrogen demand (Gelernter and Stowell, 2005. Golf Course Management, p. 108-113, March, 2005).

How the guidelines were developed

From a database of over 17,000 soil samples, we selected 3,721 that were classified as having:

- not poor performing turfgrass
- pH 5.5 8.5: to avoid aluminum toxicity at pH less than 5.5, and to avoid alkalinity hazard at pH greater than 8.5

https://www.pacetur f.org/PTRI/Document s/1202_ref.pdf

٠

Fertilizer Recommendations

Table 1. N, P, K, and Mg recommendations for golf putting greens, tee boxes, fairways, roughs, and athletic fields.

Grass Use	Grass Type	Location	Target	NN	P ₂ 0 ₅ ^P			К 2 0 К			Mg ^{Mg} <20 mg/kg
			рН		L	м	Н	L	М	Η	
							lb/100	0 sq ft/yr			-
Greens	Bermuda	North ^x	6.5	8.0	0.2	0.1	0	4.5	3	0	2
		South	6.5	12.0	0.4	0.2	0	6	4	0	2
	Cool Season	North	6.5	4.0	0.5	0.2	0	1	0.5	0	1
		South	6.5	3.0	0.4	0.2	0	1	0.5	0	1
Tees	Bermuda	North	6.5	6.0	0.2	0.1	0	3	2	0	2
		South	6.5	8.0	0.3	0.1	0	4	3	0	2
-	Cool Season	North	6.5	3.0	0.5	0.2	0	1	0.5	0	1
		South	6.5	2.0	0.4	0.2	0	0.5	0.2	0	1
Fairways	Bermuda	North	6.5	4.0	0.2	0.1	0	1	0.5	0	1
		South	6.5	5.0	0.2	0.1	0	1.2	0.6	0	1
	Cool Season	North	6.5	2.0	0.2	0.1	0	0.5	0.2	0	0.5
		South	6.5	1.0	0.1	0.1	0	0.2	0.1	0	0.5
Roughs	Bermuda	North	6.5	2	0.2	0.1	0	0.5	0.2	0	1
		South	6.5	2.5	0.2	0.1	0	0.5	0.2	0	1
Athletic Fields	Bermuda	North	6.5	3.0	0.5	0.1	0	2	1	0	1
		South	6.5	5.0	0.5	0.2	0	3	2	0	1
	Cool Season	North	6.5	2.0	0.5	0.2	0	1	1	0	1
		South	6.5	2.0	0.5	0.2	0	1	1	0	1

https://edis.ifas.ufl.edu/pdf/SS/SS40400.pdf

Questions?

AJ Lindsey alex.lindsey@ufl.edu 352-273-4791